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3 Università La Sapienza, Piazzale Aldo Moro, 00185 Roma, Italy

Received 17 January 2006
Published online 30 May 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We present a general method to detect and extract from a finite time sample statistically mean-
ingful correlations between input and output variables of large dimensionality. Our central result is derived
from the theory of free random matrices, and gives an explicit expression for the interval where singular
values are expected in the absence of any true correlations between the variables under study. Our result
can be seen as the natural generalization of the Marčenko-Pastur distribution for the case of rectangular
correlation matrices. We illustrate the interest of our method on a set of macroeconomic time series.

PACS. 05.45.Tp Time series analysis – 02.10.Yn Matrix theory – 89.65.Gh Economics; econophysics,
financial markets, business and management

1 Introduction

Finding correlations between observables is at the heart
of scientific methodology. Once correlations between
“causes” and “effects” are empirically established, one can
start devising theoretical models to understand the mech-
anisms underlying such correlations, and use these mod-
els for prediction purposes. In many cases, the number of
possible causes and of resulting effects are both large. For
example, one can list an a priori large number of environ-
mental factors possibly favoring the appearance of several
symptoms or diseases, or of social/educational factors de-
termining choices and tastes on different topics. A vivid
example is provided by Amazon.com, where taste correla-
tions between a huge number of different products (books,
CDs, etc.) are sought for. In the context of gene expression
networks, the number of input and output chemicals and
proteins, described by their concentration, is very large.
In an industrial setting, one can monitor a large num-
ber of characteristics of a device (engine, hardware, etc.)
during the production phase and correlate these with the
performances of the final product. In economics and fi-
nance, one aims at understanding the relation between
a large number of possibly relevant factors, such as in-
terest and exchange rates, industrial production, confi-
dence index, etc. on, say, the evolution of inflation in dif-
ferent sectors of activity [1], or on the price of different
stocks. Nowadays, the number of macroeconomic time se-
ries available to economists is huge (see below). This has
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lead Granger [2] and others to suggest that “large mod-
els” should be at the forefront of the econometrics agenda.
The theoretical study of high dimensional factor models
is indeed actively pursued [1,3–7], in particular in relation
with monetary policy [1,8].

In the absence of information on the phenomenon un-
der study, a brute force strategy would consist in listing
a large number of possible explanatory variables and a
large number of output variables, and systematically look
for correlations between pairs, in the hope of finding some
significant signal. In an econometric context, this is the
point of view advocated long ago by Sims [9], who sug-
gested to look at large Vector Autoregressive models, and
let the system itself determine the number and the na-
ture of the relevant variables. However, this procedure is
rapidly affected by the “dimensionality curse”, also called
the problem of sunspot variables in the economics litera-
ture [10]. Since the number of observations is always lim-
ited, it can happen that two totally unrelated phenomenon
(such as, for example, stock prices and sunspots) appear
to be correlated over a certain time interval T . More pre-
cisely, the correlation coefficient ρ, which would (presum-
ably) be zero if very long time series could be studied,
is in fact of the order of 1/

√
T and can be accidentally

large. When one tries to correlate systematically N input
variables with M output variables, the number of pairs
is NM . In the absence of any true correlation between
these variables, the largest of these NM empirical corre-
lation coefficients will be, for Gaussian variables, of or-
der ρmax ∼ √

2 ln(NM)/T , which grows with NM . For
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example, ρmax ≈ 0.25 for N = M = 25 and T = 200. If
the input and output variables are non Gaussian and have
fat-tails, this number can be even larger: if two strongly
fluctuating random variable accidentally take large values
simultaneously, this will contribute a lot to the empirical
correlation even though ρ should be zero for large T .

In this paper we want to discuss how recent results
in Random Matrix Theory [11,12] allow one to alleviate
this dimensionality curse and give a precise procedure to
extract significant correlations between N input variables
and M output variables, when the number of independent
observations is T . The idea is to compare the singular
value spectrum of the empirical rectangular M × N cor-
relation matrix with a benchmark, obtained by assuming
no correlation at all between the variables. For T → ∞
at N, M fixed, all singular values should be zero, but this
will not be true if T is finite. The singular value spectrum
of this benchmark problem can in fact be computed ex-
actly in the limit where N, M, T → ∞, when the ratios
m = M/T and n = N/T fixed. As usual with Random
Matrix problems [11,12], the singular value spectrum de-
velops sharp edges in the asymptotic limit which are to
a large extent independent of the distribution of the ele-
ments of the matrices. Any singular value observed to be
significantly outside these edges can therefore be deemed
to carry some relevant information. A similar solution has
been known for a long time for standard correlation matri-
ces, for example the correlations of the N input variables
between themselves that define an N ×N symmetric ma-
trix. In this case, the benchmark is known as the Wishart
ensemble, and the relevant eigenvalue spectrum is given by
the Marčenko-Pastur distribution [13–15]. Applications of
this method to financial correlation matrices are relatively
recent [16] but very active [17,18]. Comparing the empiri-
cal eigenvalues to the correlation matrix to the theoretical
upper edge of the Marčenko-Pastur spectrum allows one
to extract statistically significant factors [16] (although
some may also be buried below the band edge, see [17]).
Similar ideas are starting to be discussed in the economet-
ric community, in particular to deal with the problem of
identifying the relevant factors in large dynamical factor
models [19], and using them for prediction purposes (see
also [6] for a different point of view). Here, we extend the
Marčenko-Pastur result to general rectangular, non-equal
time correlation matrices. We will first present a precise
formulation of our central result, which we will then illus-
trate using an economically relevant data set, and finally
discuss some possible extensions of our work.

2 Mathematical formulation of the problem

We will consider N input factors, denoted as Xa, a = 1,...,
N and M output factors Yα, α = 1, ..., M . There is a total
of T observations, where both Xat and Yαt, t = 1, ..., T
are observed. We assume that all N + M time series are
standardized, i.e., both X ’s and Y ’s have zero mean and
variance unity. The X and the Y ’s may be completely
different, or be the same set of observables but observed at
different times, as for example N = M and Yαt = Xat+1.

From the set of X ’s and Y ’s one can form two correlations
matrices, CX and CY , defined as:

(CX)ab =
1
T

T∑

t=1

XatXbt

(CY )αβ =
1
T

T∑

t=1

YαtYβt. (1)

In general, the X ’s (and the Y ’s) have no reason to be
independent of each other, and the correlation matrices
CX and CY will contain information on their correlations.
As alluded to above, one can diagonalize both these ma-
trices; provided T > N, M — which we will assume in
the following — all eigenvalues will, in generic cases, be
strictly positive. In certain cases, some eigenvalues will
however lie close to zero, much below the lower edge of
the Marčenko-Pastur interval, corresponding to redundant
variables which may need to be taken care of (see below).
Disregarding this problem for the moment, we use the
corresponding eigenvectors to define a set of uncorrelated,
unit variance input variables X̂ and output variables Ŷ .
For example,

X̂at =
1√
Tλa

∑

b

VabXbt, (2)

where λa is the ath eigenvalue of CX and Vab the com-
ponents of the corresponding eigenvector. Now, by con-
struction, CX̂ = X̂X̂T and CŶ = Ŷ Ŷ T are exactly iden-
tity matrices, of dimension, respectively, N and M . Using
general property of diagonalisation, this means that the
T × T matrices DX̂ = X̂T X̂ and DŶ = Ŷ T Ŷ have ex-
actly N (resp. M) eigenvalues equal to 1 and T −N (resp.
T − M) equal to zero.

Now, consider the M × N cross-correlation matrix G
between the X̂’s and the Ŷ ’s:

(G)αb =
T∑

t=1

ŶαtX̂bt ≡ Ŷ X̂T . (3)

The singular value decomposition (SVD) of this matrix
answers the following question [20]: what is the (nor-
malised) linear combination of X̂’s on the one hand, and of
Ŷ ’s on the other hand, that have the strongest mutual cor-
relation? In other words, what is the best pair of predictor
and predicted variables, given the data? The largest singu-
lar value smax and its corresponding left and right eigen-
vectors answer precisely this question: the eigenvectors tell
us how to construct these optimal linear combinations,
and the associated singular value gives us the strength of
the cross-correlation. One can now restrict both the input
and output spaces to the N − 1 and M − 1 dimensional
sub-spaces orthogonal to the two eigenvectors, and repeat
the operation. The list of singular values sa gives the pre-
diction power, in decreasing order, of the corresponding
linear combinations.
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3 Singular values from free random matrix
theory

How to get these singular values? If M < N , the trick
is to consider the matrix M × M matrix GGT (or the
N × N matrix GT G if M > N), which is symmetri-
cal and has M positive eigenvalues, each of which be-
ing equal to the square of a singular value of G itself.
The second observation is that the non-zero eigenvalues
of GGT = Ŷ X̂T X̂Ŷ T are the same as those of the T × T
matrix D = DX̂DŶ = X̂T X̂Ŷ T Ŷ , obtained by swapping
the position of Ŷ from first to last. In the benchmark situa-
tion where the X̂’s and the Ŷ ’s are independent from each
other, the two matrices DX̂ and DŶ are mutually free [11]
and one can use results on the product of free matrices to
obtain the eigenvalue density from that of the two individ-
ual matrices, which are known. The general recipe [14,11]
is to construct first the so-called η-transform of the eigen-
value density ρ(u) of a given T ×T non negative matrix A,
defined as:

ηA(γ) =
∫

duρ(u)
1

1 + γu
≡ 1

T
Tr

1
1 + γA

. (4)

From the functional inverse of ηA, one now defines the
Σ-transform of A as:

ΣA(x) ≡ −1 + x

x
η−1

A (1 + x). (5)

Endowed with these definitions, one of the fundamental
theorems of Free Matrix Theory [11] states that the Σ-
transform of the product of two free matrices A and B is
equal to the product of the two Σ-transforms. [A similar,
somewhat simpler, theorem exists for sums of free matri-
ces, in terms of “R-transforms”, see [11]]. Applying this
theorem with A = DX̂ and B = DŶ , one finds:

ηA(γ) = 1 − n +
n

1 + γ
, n =

N

T
;

ηB(γ) = 1 − m +
m

1 + γ
, m =

M

T
. (6)

From this, one easily obtains:

ΣD(x) = ΣA(x)ΣB(x) =
(1 + x)2

(x + n)(x + m)
. (7)

Inverting back this relation allows one to derive the
η-transform of D as:

ηD(γ) =
1

2(1 + γ)

[
1 − (µ + ν)γ

+
√

(µ − ν)2γ2 − 2(µ + ν + 2µν)γ + 1
]

(8)

with µ = m − 1 and ν = n − 1. The limit γ → ∞ of
this quantity gives the density of exactly zero eigenvalues,
easily found to be equal to max(1−n, 1−m), meaning, as
expected, that the number of non zero eigenvalues of D is

min(N, M). Depending on the value of n + m compared
to unity, the pole at γ = −1 corresponding to eigenvalues
exactly equal to one has a zero weight (for n + m < 1) or
a non zero weight equal to n + m − 1. One can re-write
the above result in terms of the more common Stieltjes
transform of D, S(z) ≡ η(−1/z)/z, which reads:

SD(z) =
1

2z(z − 1)

[
z + (µ + ν)

+
√

(µ − ν)2 + 2(µ + ν + 2µν)z + z2
]
. (9)

The density of eigenvalues ρD(z) is then obtained from
the standard relation [11]:

ρD(z) = lim
ε→0

�
[

1
πT

Tr
1

z + iε−D
]

= lim
ε→0

1
π
� [SD(z + iε)] , (10)

which leads to the rather simple final expression, which is
the central result of this paper, for the density of singular
values s of the original correlation matrix G ≡ Ŷ X̂T :

ρ(s) = max(1− n, 1−m)δ(s) + max(m + n− 1, 0)δ(s− 1)

+
�√

(s2 − γ−)(γ+ − s2)
πs(1 − s2)

, (11)

where γ± are the two positive roots of the quadratic ex-
pression under the square root in equation (9) above,
which read explicitely1:

γ± = n + m − 2mn± 2
√

mn(1 − n)(1 − m). (12)

This is our main technical result, illustrated in Figure 1.
One can check that in the limit T → ∞ at fixed N , M , all
singular values collapse to zero, as they should since there
is no true correlations between X and Y ; the allowed band
in the limit n, m → 0 becomes:

s ∈ [|√m −√
n|,√m +

√
n
]
. (13)

When n → m, the allowed band becomes s ∈
[0, 2

√
m(1 − m)] (plus a δ function at s = 1 when

n + m > 1), while when m = 1, the whole band collapses
to a δ function at s =

√
1 − n. When n + m → 1−, the

inchoate δ-peak at s = 1 is announced as a singularity
of ρ(s) diverging as (1 − s)−1/2. Finally, when m → 0 at
fixed n, one finds that the whole band collapses again to
a δ function at s =

√
n. This last result can be checked

directly in the case one has one output variable (M = 1)
that one tries to correlate optimally with a set of N inde-
pendent times series of length T . The result can easily be
shown to be a correlation of

√
N/T . A plot of the SV den-

sity ρ(s) for values of m and n which will be used below is

1 One can check that γ+ ≤ 1 for all values of n, m < 1. The
upper bound is reached only when n + m = 1, in which case
the upper edge of the singular value band touches s = 1.
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Fig. 1. Continuous part of the theoretical random singular
value spectrum ρ(s) for different values of n and m. Note that
for n = m the spectrum extends down to s = 0, whereas for
n+m → 1, the spectrum develops a (1−s)−1/2 singularity, just
before the appearance of a δ peak at s = 1 of weight n+m−1.

Fig. 2. Random Singular Value spectrum ρ(s) for m = 35/265
and n = 76/265. We show two possible theoretical calcula-
tions, corresponding either to bare random vectors X and Y ,
for which the singular value spectrum is related to the ‘square’
(in the free convolution sense) of the Marčenko-Pastur distri-

bution MP 2, or standardized vectors X̂ and Ŷ , obtained after
diagonalizing the empirical correlation matrices of X and Y .
We also show the results of a numerical simulation of the stan-
dardized case with T = 2650.

shown in Figure 2, together with a numerical determina-
tion of the SVD spectrum of two independent vector time
series X and Y , after suitable diagonalisation of their em-
pirical correlation matrices to construct their normalised
counterparts, X̂ and Ŷ . The agreement with our theoret-
ical prediction is excellent.

Note that one could have considered a different bench-
mark ensemble, where the independent vector time se-
ries X and Y are not diagonalized and transformed into
X̂ and Ŷ before SVD. The direct SVD spectrum in that
case can also be computed as the Σ-convolution of two
Marčenko-Pastur distributions with parameters m and n,
respectively (noted MP 2 in Fig. 2). The result, derived in

the Appendix, is noticeably different from the above pre-
diction (see Fig. 1). This alternative benchmark ensem-
ble is however not well suited for our purpose, because it
mixes up the possibly non trivial correlation structure of
the input variables and of the output variables themselves
with the issue at stake here, namely the cross-correlations
between input and output variables.

4 Application: inflation vs. economic
indicators

We now turn to the analysis of a concrete example. We
investigate how different groups of US inflation indexes
can be explained using combinations of indicators belong-
ing to different economic sectors. As “outputs” Y , we use
34 indicators of inflation, the monthly changes of the Com-
posite Price Indexes (CPIs), concerning different sectors
of activity including and excluding commodities. These in-
dexes were not selected very carefully and some are very
redundant, since the point of our study is to show how
the proposed method is able to select itself the relevant
variables. As explanatory variables, “inputs” X , we use
76 different macroeconomic indicators from the following
categories: industrial production, retail sales, new orders
and inventory indexes of all available economic activity
sectors, the most important consumer and producer confi-
dence indexes, new payrolls and unemployment difference,
interest rates (3 month, 2 and 10 years), G7 exchange rates
against the Dollar and the WTI oil price itself. The to-
tal number of months in the period June 1983–July 2005
is 265. We want to see whether there is any significant
correlation between changes of the CPIs and of the eco-
nomic indexes, either simultaneous or one month ahead.
We also investigated two-month lag correlations, for which
we found very little signal.

We first standardized the time series Y and X and
form the rectangular correlation matrix between these
two quantities, containing 34 × 76 numbers in the inter-
val [−1, 1]. The distribution of these pair correlations is
shown in Figure 3, both for equal time ŶtX̂

T
t and for

one-month lagged ŶtX̂
T
t−1 correlations, and compared to

a Gaussian distribution of variance T−1. We see that the
empirical distributions are significantly broader; in par-
ticular an ‘island’ of correlations around ≈0.6 appears for
the one-month lagged correlations. These correspond to
correlations between oil prices and energy related CPIs
one month later. The question is whether there are other
predictable modes in the system, in particular, are the
correlations in the left and right flanks of the central peak
meaningful or not? This question is a priori non triv-
ial because the kurtosis of some of the variables is quite
high, which is expected to ‘fatten’ the distribution of ρ
compared to the Gaussian. Within the period of about
thirty years covered by our time series, three major rare
events happened: the Gulf War (1991–92), the Asian crisis
(1998), and the Twin Towers Attack (2001). The kurtosis
of the CPIs is the trace of the corresponding outliers, such
as the food price index and its ‘negative’, the production
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Fig. 3. Histogram of the pair correlation coefficient ρ between
X’s and Y ’s, both at equal times and with one month lag.
Note the ‘island’ of correlations around ≈0.6 for one-month
lagged correlations, which corresponds to correlations between
oil prices and energy related CPI’s one month later. We also
show a Gaussian of variance 1/T , expected in the absence of
any correlations.

price index excluding food, which are strongly sensitive to
war events. Among economic indicators, the most respon-
sive series to these events appear to be the inventory-sales
ratio, the manufacturing new orders and the motor and
motor parts industrial production indexes.

In order to answer precisely the above question, we
first turn to the analysis of the empirical self-correlation
matrices CX and CY , which we diagonalize and represent
the eigenvalues compared to the corresponding Marčenko-
Pastur distributions in Figure 4, expected if the variables
were independent (see the Appendix for more details).
Since the both the input and output variables are in fact
rather strongly correlated at equal times, it is not surpris-
ing to find that some large eigenvalues λ emerge from the
Marčenko-Pastur noise band: for CX , the largest eigen-
value is ≈15, to be compared to the theoretical upper
edge of the Marčenko-Pastur distribution 2.358, whereas
for CY the largest eigenvalue is ≈6.2 to be compared with
1.858. But the most important point for our purpose is
the rather large number of very small eigenvectors, much
below the lower edge of the Marčenko-Pastur distribution
(λmin = 0.215 for CX , see Fig. 4). These correspond to
linear combinations of redundant (strongly correlated) in-
dicators. Since the definition of X̂ and Ŷ include a fac-
tor 1/

√
λ (see Eq. (2)), the eigenvectors corresponding

to these small eigenvalues have an artificially enhanced
weight. One expects this to induce some extra noise in the
system, as will indeed be clear below. Having constructed
the set of strictly uncorrelated, unit variance input X̂ and
output Ŷ variables, we determine the singular value spec-
trum of G = Ŷ X̂T . If we keep all variables, this spectrum
is in fact indistinguishable from pure noise when X̂ pre-
cedes Ŷ by one month, and only one eigenvalue emerges
(smax ≈ 0.87 instead of the theoretical value 0.806) when
X̂ and Ŷ are simultaneous.

Fig. 4. Eigenvalue spectrum of the N × N correlation matrix
of the input variables CX , compared to the Marčenko-Pastur
distribution with parameter n = 76/265. Clearly, the fit is very
bad, meaning that the input variables are strongly correlated;
the top eigenvalues λmax ≈ 15 is in fact not shown. Note the
large number of very small eigenvectors corresponding to com-
binations of strongly correlated indicators, that are pure noise
but have a small volatility.

If we now remove redundant, noisy factors that corre-
spond to, say, λ ≤ λmin/2 ≈ 0.1 both in CX and CY , we
reduce the number of factors to 50 for X̂ and 16 for Ŷ 2.
The cumulative singular value spectrum of this cleaned
problem is shown in Figure 5 and compared again to the
corresponding random benchmark. In this case, both for
the simultaneous and lagged cases, the top singular values
smax ≈ 0.73 (resp. smax ≈ 0.81) are very clearly above the
theoretical upper edge sue ≈ 0.642, indicating the pres-
ence of some true correlations. The top singular values
smax rapidly sticks onto the theoretical edge as the lag in-
creases. For the one-month lagged case, there might be a
second meaningful singular value at s = 0.66. The struc-
ture of the corresponding eigenvectors allows one to con-
struct a linear combination of economic indicators explain-
ing a linear combinations of CPIs series. The combination
of economic indicators corresponding to the top singular
value evidences the main economic factors affecting infla-
tion indicators: oil prices obviously correlated to energy
production increases and electricity production decreases
that explain the CPIs indexes including oil and energy.
The second factor includes the next important elements of
the economy: employment (new payrolls) affects directly
the “core” indexes and the CPI indexes excluding oil. New
economy production (high tech, media & communication)
is actually a proxy for productivity increases, and there-
fore exhibits a negative correlation with the same core
indexes. We have also computed the inverse participation
ratio of all left and right eigenvectors with similar conclu-
sions [16]: all eigenvectors have a participation ratio close

2 The results we find are however weakly dependent on the
choice of this lower cut-off, provided very small λ’s are re-
moved.
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Fig. 5. Cumulative singular value distribution for the
“cleaned” problem, i.e. removing the factors with very small
volatilities, leaving 50 factors in X̂ and 16 in Ŷ . The correla-
tions we consider are lagged and correspond to ŶtX̂

T
t−1. The

filled circles correspond to the 16 empirical singular values, and
the plain line is the theoretical prediction in the purely ran-
dom case with n = 50/265 and m = 16/265. Note that the top
singular value smax ≈ 0.81 clearly stands out of the noise band,
the edge of which is at sue = 0.642. Finite T corrections are ex-
pected to smooth the edge over a region of size T−2/3 ≈ 0.025
for T = 265.

to the informationless Porter-Thomas result, except those
corresponding to singular values above the upper edge.

Since Yt−1 may contain some information to predict Yt,
one could also study, in the spirit of general Vector Autore-
gressive Models [1,3,5], the case where we consider the full
vector of observables Z of size 111, obtained by merging
together X and Y . We again define the normalised vector
Ẑ, remove all redundant eigenvalues of ẐẐ ′ smaller than
0.1, and compute the singular value spectrum of ẐtẐ

T
t−1.

The size of this cleaned matrix is 62 × 62, and the upper
edge of the random singular value spectrum is sue ≈ 0.84.
We now find that the top singular value is at smax ≈ 0.97,
and that ∼8 factors have singular values above the upper
edge of the random spectrum. The top singular value cor-
responds to sales and inventory/sales ratio, followed by
CPIs that tend to be correlated over time. Further results
are less intuitively simple. This analysis can of course be
generalized to larger lags, by studying ẐtẐ

T
t−n. We find

that even for n = 4, there are still three singular values
above the upper edge. The SVD results are therefore of
great help to rank the importance of autocorrelations of
degree n in the system; we will explore this point further
in a future publication.

5 Conclusions and extensions

The conclusions of this illustrative empirical study are
twofold: (i) in general, both input and output variables
have a non trivial correlation structure, with many redun-
dant factors which add a significant amount of noise in
the problem. Therefore, in a first step, some data clean-

ing must be performed by eliminating these redundant
variables; (ii) the singular value spectrum, compared to
its purely random counterpart, allows one to answer pre-
cisely the question of the number and relevance of inde-
pendent predictable factors in the problem under study.
In the case considered, we have seen that although the
number of pairs of apparently correlated factors is large
(see Fig. 3), only a few modes can in fact be considered
as containing useful information, in the sense that their
singular value exceeds our analytical upper edge given in
equation (11). When studying the full problem where all
variables are treated together, we find that the effective
dimensionality of the problem drops from 111 to eight or
so independent, predictable factors. This compares quite
well with the number seven quoted by Stock and Watson
within their dynamical factor analysis of a similar data
set [1]. A more thorough comparison of our results with
those of the econometrics literature will be presented else-
where.

What we mean by ‘exceed the upper edge’ should
of course be specified more accurately, beyond the eye-
balling procedure that we implicitly rely on. In order to
have a more precise criterion, one should study the statis-
tics of the top eigenvalue of D, which is, in analogy with
the known results for the Wishart ensemble, most prob-
ably given by a Tracy-Widom distribution, at least for
Gaussian random variables (see [21,22] for recent progress
and references). For finite T , we expect the top eigenvalue
of D to ooze away from the theoretical edge by a quan-
tity of order T−2/3 ≈ 0.025 for T = 265. Therefore, the
difference between smax ≈ 0.81 and the theoretical edge
sue = 0.642 reported in Figure 5 can safely be considered
as significant when all variables are Gaussian. However,
although the density of singular values is to a large degree
independent of the distribution of the matrix entries, one
should expect that the fuzzy region around the theoreti-
cal edge expands significantly if the input and output vari-
ables have fat tails. In particular, the Tracy-Widom distri-
bution is expected to breakdown in some way that would
be very interesting to characterize precisely. We leave this
problem to future investigations.

In conclusion, we have presented a general method to
extract statistically meaningful correlations between an
arbitrary collection of input and output variables of which
only a finite time sample is available. Our central result
is derived from the theory of free random matrices, and
gives an explicit expression for the interval where singular
values are expected in the absence of any true correlations
between the variables under study. Our result can be seen
as the natural generalization of the Marčenko-Pastur dis-
tribution for the case of rectangular correlation matrices.
The potential applications of this method are quite nu-
merous and we hope that our results will prove useful
in different fields where multivariate correlations are rele-
vant.

We wish to thank Gérard Ben Arous, Florent Benaych-Georges
and Jack Silverstein for most useful discussions on Random
Matrix Theory.
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Appendix: the MP2 case

As indicated in the main text, one could have chosen as a
benchmark the case where all (standardized) variables X
and Y are uncorrelated, meaning that the ensemble aver-
age E(CX) = E(XXT ) and E(CY ) = E(Y Y T ) are equal
to the unit matrix, whereas the ensemble average cross-
correlation E(G) = E(Y XT ) is identically zero. However,
for a given finite size sample, the eigenvalues of CX and
CY will differ from unit, and the singular values of G will
not be zero. The statistics of the eigenvalues of CX and
CY is well known to be given by the Marčenko-Pastur
distribution with parameters n and m respectively, which
reads, for β = n, m < 1:

ρMP (λ) =
1

2πβλ
�

√
(λ − λmin)(λmax − λ), (14)

with

λmin =
(
1 −

√
β
)2

λmax =
(
1 +

√
β
)2

. (15)

The Σ-transform of this density takes a particularly simple
form:

Σ(x) =
1

1 + βx
. (16)

Now, as explained in the main text, the singular values
of G are obtained as the square-root of the eigenvalues of
D = XT XY T Y . Since XT X and Y T Y are mutually free,
one can again use the multiplication rule of Σ-transforms,
after having noted that the Σ-transform of the T × T
matrices XT X and Y T Y are now given by:

Σ(x) =
1

β + x
. (17)

One therefore finds that the η transform of D is obtained
by solving the following cubic equation for x:

η−1(1 + x) = − 1 + x

x(n + x)(m + x)
, (18)

which can be done explicitely, leading to the following
(lengthy) result. Denote z = s2, one should first compute
the following two functions:

f1(z) = 1 + m2 + n2 − mn − m − n + 3z (19)

and

f2(z) = 2 − 3m(1 − m) − 3n(1 − n) − 3mn(n + m − 4)

+ 2(m3 + n3) + 9z(1 + m + n). (20)

Then, form:
∆ = −4f1(z)3 + f2(z)2. (21)

If ∆ > 0, one introduces a second auxiliary variable Γ:

Γ = f2(z) −
√

∆, (22)

to compute ρ2(z):

πρ2(z) = − Γ 1/3

24/331/2z
+

f1(z)
22/331/2Γ 1/3z

. (23)

Finally, the density ρ(s) is given by:

ρ(s) = 2sρ2(s2). (24)
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